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ABSTRACT

A device is repaired at failure. With probability p, it is returned
to the "'good as new" state (perfect repair), with probability 1 - p it is
returned to the functioning state, but it is only as good as a device of
age equal to its age at failure (imperfect repair). Repair takes negligible
time. We obtain the distribution Fp of the interval between successive
good as new states in terms of the underlying life distribution F. We
IFR, DFR,

Finally,

show that if F is in any of the life distribution classes:
IFRA, DFRA, NBU, NiWJ, IMRL, or IMRL, then Fp is in the same class.
we obtain a mumber of monotonicity properties for various parameters and
random variables of the stochastic process. The results obtained are of
interest in the context of stochastic processes in general, as well as

being useful in the particular imperfect repair model studied.
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Imperfect Repair.

1. Iritroduction and Summary.

It is well known in practice that repair of a failed item may not yield
a functioning item which is "as good as new". In this paper, we treat a
model for imperfect repair somewhat related to the model of 'minimal repair
at failure'. See Barlow amd Proschan (1965), pp. 96-98. Our results may
be of interest in renewal theory as well as in reliability theory.

1.1. Model. An item is repaired at failure. With probability p,
it is returned to the '"good as new" state (perfect repair), with probability
q=1-p, it is returned to the functioning state, but it is only as good
as an item of age equal to its age at failure (imperfect repair). Repair
takes negligible time. The process of alternating failure and repair

contimues indefinitely over time; we call it a failure process.

Suppose the item has underlying life distribution F. To avoid in-
essential technicalities, we assume the failure rate function r(t) exists.

In Section 2, we obtain the distribution Fp of the interval between
successive good-as-new states (regeneration points of the stochastic
process). We show that the failure rate function of Fp is simply p r(t).
Although the proof is trivial, the result is interesting in two ways:

(1) It furnishes useful information in the imperfect repair model of
1.1.

(2) It shows how devices with proportional failure rates or proportional
hazard functions may arise in a naturally occurring physical situation.

We show in Section 2 that if F is in any of the classes: IFR, DFR,
IFRA, DFRA, NBU, NwU, IMRL, or IMRL, theanis in the same class. We are
unable to obtain a corresponding preservation rosult for F NHWUE or F NWE,

although we conjecture such a result holds.
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In Section 3, we derive a variety of monotonicity properties and
inequalities for various parameters and random variables of interest.
For example, for F NBUE, the mean time u(p) between perfect repairs is
bounded above by: %u(n. (Note that u(1) is the mean of F.) Under slightly
stronger assumptions, p u(p) is shown to be increasing in p ¢ (0, 1i. We
also show that for F NBU(NWJ), the mmber Np(t) of failures in [0, t) is

stochastically decreasing (increasing) in p. We also obtain monotonicity
s results for the waiting time until the next failure starting in the steady
state of the failure process assuming first F IFR(DFR) and alternatively

F DMRL (IMRL). Finally, for F DFR we obtain a variety of monotonicity
! results for the waiting time until the next failure in the transient state.
The methods used in obtaining the results described above are of
interest in their own right. They should be applicable in other stochastic
: processes.
Also, the imperfect repair model treated in this paper appears to be
useful in studying properties of proportional hazard families of distributions.

One final word: The problem of imperfect and even destructive repair 1

is an important practical one in reliability, although few results are
available in the statistical literature. We are preparing additional
papers studying other aspects of this problem.
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2. Preservation of Aging Properties.

To obtain our first result, note that the choice of p = 0 results in
a nonhomogeneous Poisson process with intensity function r(t). This process
has the same distribution as the process of upper record values derived from
i.i.d. observations with distribution F. Specifically, let X, i 21) be
i.i.d. observations fram F. Define Y, = X}, Ny = {min i: X, > X;}, ¥, = XNZ,
N3 = {min i: xi > Yz}. YS = st, etc. Then {Yi, i 2 1) generates a nonhomogeneous
Poisson process with intensity function r(t).

The choice 0 < p < 1 leads to a process in which the time epochs of perfect
repairs are regeneration points. The interval between successive regeneration
points is the waiting time for a perfect repair starting with a new component.

Let Fp denote the waiting time distribution for a perfect repair starting .
with a new camponent. Let rp denote its failure rate function. Then we show:

2.1, Lema. (i) r(t) =pr(t). (ii) F(¢) = FP(e).

Proof. (i) Given that no perfect repairs occur in (0, t), the item
present at time t behaves as an item of age t. Its failure rate is thus r(t).
After a failure occurs, repair is perfect with probability p. Thus the condi-
tional intensity of a perfect repair at time t given no perfect repairs in
(o, t) is rp(t) = -r(t). .

(1i) Since Fp(:) - exp{-([) 1,(s)ds}, it follows that Fp(t) = FP(t). ||

Since the original failure rate function is simply multiplied by p, it follows
that many of the important classes of distributions characterized by aging
properties are preserved in the following sense: If F has a given aging
property, then F_ also has this property for 0 < p < 1. We state this formally

p
in:
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NWJ, IMRL, or IMRL. Then Fp is in the same class.

Proof. For the first six classes, the conclusion follows directly from
rp(t) = pr(t).

Suppose now F is IMRL. Let Y have distribution Fp. Define ‘tk(t) to be
the time of the kt'h failure after time t. Since for s < t, -rk(s) < rk(t)
deteministically, it follows that rk(t) is stochastically increasing in t.

Define g(t) = E(XX - t|X > t). Then:

(2.1) E(Y - t]Y > t) = g(t) + f q* Eg(ry (t)).
k=1
Since F is DMRL, g is decreasing. Thus Eg(rk(t)) is decreasing. From (2.1)
it follows that Y is DMRL.
A similar argument holds for F IMRL. ||
Remark. We do not know whether Theorem 2.2 can be extended to the NBUE
and NWUE cases.

2.2. Theorem. Let F be in any of the classes: IFR, DFR, IFRA, DFRA, NBU,

i
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3. Monotonicity Properties.

Define u(p) = [x dF (x) = JEP(x)dx. Theorem 3.1 presents monotonicity
properties of u(p).

3.1. Theorem. (i) Let F be NBUE. Then u(p) < %u(l) for 0 <ps1.

(ii) Let Fp be NBUE for all p in (0, 1.. Then p u(p) is increasing for
p € (0, 1;. In particular, this monotonicity holds for F NBU or D4RL.

(iii) Dual results hold for the NWIE, N\WU, and IMRL classes.

Proof. (i) Let Y have distribution Fp and N denote the mmber of the
failure which results in the first perfect repair. Since F is NBUE, then
EQYIN = n) < nu(1). Thus u(p) = EY = EE(YIN)) < w(DEN = 2 u().

_ p,/p
(ii) Since Fpl(t) - (F, (1)) 152 and F . is NIE, it follows from (i) that for
2 2

P, < Py ulpp) < %u(pz). Thus p u(p) is increasing. If F is NBU (DMRL), then by
Lemma 2.1, Fp is also NBU (iRL), and is tnus NBUE.

(iii) The results follow by the arguments in (i) and (ii). ||

The inequality: p; u(p;) < p, u(p,) for p; < p, when Fp is NBUE for all - ;
p € [0, 1) can be interpreted as: Fp is smaller in expectation than a geometric i

1 .
sun (with parameter p1/p2) of i.i.d. random variables having distribution F_ . 3

P2
When F is NBU, 'smaller in expectation'' can be strengthened to
"'stochastically smaller''.

3.2. Theorem. Assume that F is NBU and P, < Py Suppose that

Y ~ Fpl, {Zi, i 21) is an i.i.d. sequence with distribution Fp , and that N
2
is a geometric random variable with parameter pllpz, independent of
N
{Z;, i 21}. Then Y is stochastically smaller than } Z;- A dual result holds

for F NWU. !

Proof. We prove the result for Pp="P Py " 1. By the argument in the
proof of Th. 3.1(ii) and by the fact that Fp is NBU (Th. 2.2), the desired
conclusion will follow in the general case.
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First note that Y = § Xi, where xi denotes the interval between the (i - IJSt

and the ith failures, and N is a geometric random variable with parameter p.
Since F is NBU, xi is stochastically smaller than Zi given X,, ..., xi-l,
{N 2 i}, for each i. We can therefore construct a version of (N, xl, cees XN,
Zl, veus ZN) with desired marginal distributions for (N, §1, ﬁ XN) and
o, Zys eeen ZN) with X; < Z,, I%J =1, ..., N, a.s. Thus ; X, < % Z; a.s.,
§m which it follows that Y = } X, is stochastically smaller than

Let Np(t) denote the mmber of failures in [0, t) for the failure process ‘
in which perfect repair has probability p. In Corollary 3.4 we prove that for
F NBU, Np(t) is stochastically decreasing in p. First we need a preliminary
lemma.

3.3. Lemma. Let Fbe NBU and p = 0. Let ‘l’k(t) denote the time of the

th

k~ failure after time t. Then tk(t) - t is stochastically smallest when t = 0.

Proof. No(t +Xx) - No(t) is governed by a Poisson distribution with
t+x
parameter [ r(s)ds. Since F is NBU, then Ny(t + x) - Ny(t) is stochastically
t

smallest for t = 0. But P[tk(t) -t>x]= P[No(t +X) - No(t) sk-1j
which is maximized for t = 0. ||
3.4. Corollary. Let F be NBUNW). Then Np(t) is stochastically decreasing

(increasing) in p.
Proof. Let {Ni’- i 21} be i.i.d. geometric random variables with

oy

parameter p,, S;i - g P}i, {Ni, i 21} be i.i.d. geometric random variables with
parameter pl/pz, S‘,; = i Ni, S; = Sg1» and 03.' = SJQ - S;.‘_l. Then {Dg, j 21} is

a sequence of i.i.d. geometric random variables with parameter Py




Next we construct two failure processes as follows. Process 1, with
parameter p,, has perfect repair of the Sith failure, of the Sath failure,
««+; Process 2, with parameter Py has perfect repair of the th failure, of
the S;h failure, ... . Let Ti(k) denote the time of the kth failure in
Process i, i = 1, 2. We wish to prove that Tl(k) is stochastically smaller
than Tz(k) for all k, from which the desired conclusion immediately follows.

By Theorem 3.2, T, (Sg) is stochastically smaller than TZ(Sg) for all
j 2 1. Now condition on {S}, j 21}. Given k, find j such that
S}-l < k< b; Now Tl(k) = T1 (S:’i'_l) + Al" where A1 is distributed as the time
until the (k - Sg'.'_l)th failure in a failure process with p = 0.

Also Tz(k) = Tz(ss.‘_l) *+ A,, where A, is distributed as the conditional
distribution of the time until the (k - s3.~_l)th failure in a failure process

with parameter Py given the information as to which, if any, of the k - S;?_

o

~cpairs are perfect. It follows from Lemma 2.1 that AZ is stochastically
larger than A,. Since Tz(sg_l) is stochastically greater than T, (53!'_1),
A and Tl(Sg_l) are independent, and A, and Tz(sg_l) are independent, the
desired conclusion follows. ||

3.5. Theorem. Let F be IFR. Let Z o denote the waiting time until the

next failure, starting in steady date. Let hp denote the failure rate
function of Zp. Then, (i) for each t > hp(t) is decreasing in p; (ii) as a
consequence, Zp is stochastically increasing in ». (iii) Jual results hold for
F DFR.

Proof. (i) The effective age of a component in steady state is the time
since the last perfect repair. Since the successive time points of perfect

Tepair form a renewal process with interarrival time distribution Fp, the

N oo TR S
T SRR 3. S
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steady state age density is FP(x)/u(p). Since for Py < Py Fpl(x)/l_:pz(x) is

increasing in x, it follows that the family of densities:

(3.1) Yp(x) - Q'Y(J()FP(X) , x 20,
(f) y(X)FP (x)dx

has decreasing monotone likelihood ratio in p for each nonnegative function y
satisfying f y(x)l_’p(x)dx < », Thus the distribution with density Yp is

0
stochastically decreasing inp, 0 < p < 1.

Next note that:

Z FP(x ______F'(;_(+)x) r(t + x)dx
X
%(t) =

? Fp%x% F(t + %) 4
(j; P Fix)

= :f: r(t + x) vp(X)dx.

with % definad by (3.1) with y(¥) = F(t + x)/F(x). Since r is incressirg and
1 is stochastically decreasing in p, then h_(t) is decreasing in p.

(i) Since Fy (s) = &Y hp(t)dt ;¢ foliows that 2 , is stochastically
P
increasing in p.

(iii). The dual results are obtained in a similar fashion. ||
A weaker conclusion is obtained under the weaker assumption of F DMRL(IMRL):
3.6. Corollary. Let F be DMRL(IMRL). Then Ezp is increasing (decreasing)

in p.

Proof. Let F be IMRL. Then g(t) = E(X - t|X > t) is decreasing. We

may express:




e ha i i iAo e s s A bt o v o

.t P@
EZ, f—u—&%—g(t)dt.

Since —F!;{g- is the density of a distribution stochastically decreasing in p, it |

follows that EZp is increasing in p. b
A similar argument yields the result for F IMRL. ||

E In all the results above, conclusions were obtained for dual families of

distributions corresponding to deterioration witn age and improvement with age.

p The following result applies for DFR distributions, but the dual result is known
not to necessarily hold for IFR distributions.

3.7. Theorem. Let F be DFR. Let Z p(t) denote the waiting time at t

for the next failure to occur; let Z;(t) denote the waiting time at t for

f the next perfect repair. Let mp(t) denote the failure intensity at t and let
m;(t) denote the renewal density at t for the renewal process with interarrival
time distribution Fp. Finally, let Ap(t) denote the effective age at time t,
i.e., the time elapsed since the last perfect repair. Then:

(i) Ap(t), Zp(t), and Z;(t) are stochastically increasing in t for =

ES U TSV AL RIS S

fixed p; mp(t) and ml';(t') are decreasing in t for fixed p.
! (ii) Ap(t) and Zp(t) are stochastically decreasing in p for fixed t,
mp(t) is increasing in p for fixed t.

Proof. (i) Since Fp is DFR, it follows from Brown (1980), Theorem 3,
that }\)(t) and Z;(t) are stochastically increasing in t and_ that n%(t) is
decreasing in t. Since PLZ(t) > xI = [ Ei’-;_(illdp ) Fxen 4

N F(y)

increasing in y, and F is stochastically increasing in t, it follows

Ap(t)

( that P[Zp(t) > x] 1s increasing in t. Finally, mp(t) - %m;(t), so that

mp(t) is decreasing in t.
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3 (i) Fer p; < p,, 1 (t) = p,r(t) 2 p;r(t) = sup r_ (s). It follows
. P, 1 s2t 1
from Theorcem 1 of Brown (19280) that we can construct a random variable C with

distribution Fp » & sequence {Bi’ i 21)of i.i.d. random variables with
1 N

distribution Fp , and a stopping time N such that C = Z Bi a.s. By employing
2 £

this construction, we generate a bivariate failure pro;ess with marginals which
are failure processes with parameters Pys Py and for which every P, perfect repair

time epoch is a P, perfect repair time epoch. Thus under this construction,

AP (t) 2 Ap (t) deterministically. It follows that fp(t) is stochastically
1 2 X+
F(y)

follows that Zp(t) is stochastically decreasing in p for fixed t. Since mp(t) =

decreasing in p for fixed t. Since P[Zp(t) >x]= fp dF (t)(Y)’ it
P

Er(Ap(t)), r is decreasing and Ap(t) is stochastically decreasing in p, it

follows that mp(t) is increasing in p. ||

d e gl bt it g
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